Unconditional stability and convergence of fully discrete schemes for $2D$ viscous fluids models with mass diffusion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion

In this work we develop fully discrete (in time and space) numerical schemes for two-dimensional incompressible fluids with mass diffusion, also so-called Kazhikhov-Smagulov models. We propose at most H1-conformed finite elements (only globally continuous functions) to approximate all unknowns (velocity, pressure and density), although the limit density (solution of continuous problem) will hav...

متن کامل

Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data

We consider initial/boundary value problems for the subdiffusion and diffusionwave equations involving a Caputo fractional derivative in time. We develop two fully discrete schemes based on the piecewise linear Galerkin finite element method in space and convolution quadrature in time with the generating function given by the backward Euler method/second-order backward difference method, and es...

متن کامل

Unconditional Stability for Multistep ImEx Schemes: Theory

This paper presents a new class of high order linear ImEx multistep schemes with large regions of unconditional stability. Unconditional stability is a desirable property of a time stepping scheme, as it allows the choice of time step solely based on accuracy considerations. Of particular interest are problems for which both the implicit and explicit parts of the ImEx splitting are stiff. Such ...

متن کامل

Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers' Equation

This paper analyzes the stability and convergence of the Fourier pseudospectral method coupled with a variety of specially designed time-stepping methods of up to fourth order, for the numerical solution of a three dimensional viscous Burgers’ equation. There are three main features to this work. The first is a lemma which provides for an L2 and H 1 bound on a nonlinear term of polynomial type,...

متن کامل

Domain decomposition schemes with high-order accuracy and unconditional stability

Parallel finite difference schemes with high-order accuracy and unconditional stability for solving parabolic equations are presented. The schemes are based on domain decomposition method, i.e., interface values between subdomains are computed by the explicit scheme; interior values are computed by the implicit scheme. The numerical stability and error are derived in the H norm in one dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2008

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-08-02099-1